
Tensor Field Design in Volumes

Jonathan Palacios∗ Chongyang Ma‡ Weikai Chen† Li-Yi Wei† Eugene Zhang∗

Oregon State University∗ Tsinghua University‡ University of Hong Kong†

Figure 1: Different tensor fields can lead to different visual effects when performing geometry synthesis on the same model. While the left wooden
bunny looks natural, the right bunny’s ears seem twisted. Similarly, while the left leafy torus appears orderly, the right torus provides a sense of
restlessness. The fields guiding the placements of wooden sticks and leaves were generated using our tensor field design system.

Abstract

The design of 3D tensor fields is important in several graphics
applications such as procedural noise, solid texturing, and geometry
synthesis. Different fields can lead to different visual effects. The
topology of a tensor field, such as degenerate tensors, can cause
artifacts in these applications. Existing 2D tensor field design
systems cannot handle the topology of 3D tensor fields. We present,
to our best knowledge, the first 3D tensor field design system. At
the core of our system is the ability to specify and control the type,
number, location, shape, and connectivity of degenerate tensors. To
enable such capability, we have made a number of observations
of tensor field topology that were previously unreported. We
demonstrate applications of our method in volumetric synthesis
of solid and geometry texture as well as anisotropic Gabor noise.

Keywords: solid texture synthesis, 3D tensor fields, tensor field
design, topology, texture synthesis, geometry synthesis, element
synthesis

Concepts: •Computing methodologies→ Shape modeling;

1 Introduction

Many applications in computer graphics and geometry processing
rely on the ability to locally orient 3D entities inside a volume,
such as the sinusoidal kernels in Gabor noise [Lagae et al. 2009;
Lagae and Drettakis 2011] as well as color and geometry textures
in pattern synthesis [Kopf et al. 2007; Takayama et al. 2008; Wei
et al. 2009; Ijiri et al. 2008; Ma et al. 2011]. In these applications,
the orientations of the 3D entities can be controlled by a continuous,
symmetric tensor field, whose eigenvectors provide an orthonormal
frame everywhere in the domain and whose eigenvalues describe

‡Chongyang Ma is currently at Activision.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Briefs ,, December 05-08, 2016, , Macao
ISBN: 978-1-4503-4541-5/16/12 $15.00
DOI: http://dx.doi.org/10.1145/3005358.3005369

the anisotropy in the 3D entities. Zhang et al. [2011] consider the
generation of 3D tensor fields for solid texturing.

Tensor field design can help create different artistic effects by using
different tensor fields. Figure 1 illustrates this with element synthesis
on the bunny and the double torus, each with two fields. While the
first fields for both models (left) give a rather natural appearance
of the models, the second fields (right) provide a rather different,
unorthodox flavor.

A major challenge facing tensor field design is the existence of
degenerate points, where the tensor field has repeating eigenvalues
and the orthonormal frames have discontinuity. Figure 2 (left)
shows the result of geometry synthesis guided by a tensor field
with degenerate points (around the center of the image, where the
orientations of the slab glyphs change rapidly). Such visual artifacts
can be reduced by using a different field without degenerate points
(Figure 2 (right)). One of the core capabilities of our system is to
specify and control the topology of 3D tensor fields, i.e., degenerate
points. Note that degenerate points in 3D fields form curves [Zheng
and Pang 2004], and are thus referred to as degenerate curves which
constitute tensor field topology.

Figure 2: Degenerate points in the tensor field can lead to visual
artifacts such as the unnaturally rapid change in slab orientations
(left). Such artifacts can be alleviated when using a field without
degenerate points (right).

While it is conceivable to control the topology of a volume tensor
field by controlling its behavior on the boundary surface, this strategy
can lead to undesired effects due to the following reason. The
topology of the surface tensor field does not provide a complete
picture of the topology of the corresponding 3D tensor field. As an
example, the 2D tensor field in Figure 3a contains eight degenerate
points on the boundary surface (yellow and cyan points). However,
as a 3D tensor field in Figure 3b there are two degenerate loops
completely in the interior of the volume and thus not visible from
the surface field. When simplifying the topology of the 3D tensor

field by reusing 2D tensor field topological editing [Zhang et al.
2007], unpredicted changes may occur. In Figure 3c, two degenerate
points in the surface are cancelled, which not only leads to the loss of
an internal degenerate loop and shape change for the other loop but
also the reconnection of two previously unrelated degenerate curves
(Figure 3d). Identifying possible, fundamental operations to modify
the topology of 3D tensor fields, i.e., only targeted degenerate curves
are impacted, is a challenging yet important problem that any 3D
tensor field design system faces.

(a) (b)

(c) (d)

Figure 3: The topology of a surface tensor field does not provide
a complete picture of the corresponding volume tensor field. Notice
that it is difficult to predict which surface degenerate points belong
to the same degenerate curve. Also, there can be degenerate loops
which do not intersect the boundary surface. In addition, topological
editing operations applied on the boundary tensor field can lead to
unpredicted behaviors in the topology of the corresponding volume
tensor field. For example, when removing a singularity pair in
the surface tensor field (from (a) to (c)), two degenerate curves in
the volume tensor field are joined, one of the degenerate loops is
eliminated, and the shape of the other degenerate loop is altered
(compare (b) to (d)).

Here, we present to our knowledge the first interactive 3D tensor
field design system that provides control over the topology of the
tensor fields. The user can create a tensor field by specifying
desired tensor values and local patterns inside the volume, or on the
boundary surface, or in both places. The field can be made boundary-
conforming, i.e., the surface normal direction is aligned with one of
the eigenvectors of the tensor field everywhere on the surface. At
the core of our system is the ability to locally edit the topology of
a tensor field. We identify topological editing operations that are
designed to impact only the intended degenerate curves, such as
removing one or two degenerate curves from the field, switching
the connection between two degenerate curves, and deforming a
degenerate curve. Other degenerate curves are left unaltered. We
also provide efficient algorithms to realize these operations. We
demonstrate the efficacy of our system by applying it to the control
of anisotropic Gabor noise, geometry element synthesis, and solid

texturing.

Due to the page limit, we refer to the readers to the supplementary
materials for the mathematical background on 3D tensor fields,
including tensor field topology.

2 3D Tensor Field Specification

Our 3D tensor field design system consists of two steps. First, the
user generates a tensor field by providing constraints inside the
volume and/or on the boundary surface. Second, the user edits
individual degenerate curves of the tensor field.

The computational setup of our system is as follows. The input
domain is a tetrahedral mesh M ⊂ R3. A 3D tensor field is
represented as a set of tensor values, one per each vertex of M.
Linear interpolation is used to extend the tensor values from a set
of points (vertices of M) to a continuous tensor field over M. When
performing tensor field design and editing, we modify the tensor
field by modifying its values on the vertices of M. After each
modification to the tensor field, the degenerate curves are extracted
based on the method of Zheng and Pang [2004]. The LP-type as
well as wedge/trisector classification (please see the supplementary
material) along degenerate curves are also performed and color-
coded in order to facilitate the user during design. As shown in
Figure 3 (right), an L-type wedge degenerate point is colored in
green, while an L-type trisector point is colored in blue. A P-type
degenerate point is colored in yellow if a wedge, or red if a trisector.

Our specification system is based on a number of requirements. First,
it is important to be able to specify the tensor value at a given point
in space. Second, if the desired tensor value is degenerate, it is
usually important to also specify the degenerate tensor pattern near
the point of interest. Third, we would like the interface to be both
intuitive and easy-to-use for the user. Given these requirements,
our specification system consists of the following steps. First, the
user places constraints using our design system, each of which is
a desired tensor value at a given vertex in the mesh. Second, the
constraints are used as the boundary condition of a tensor-valued
Laplace system of equations. This constrained optimization method
has been successfully used in 2D tensor field processing [Zhang et al.
2007]. Next, we focus on the details of the first step, i.e., generating
constraints based on user specification.

A constraint can be either degenerate or non-degenerate. In the
latter, it is in the form of a non-degenerate tensor T0. A degenerate
constraint is in the form of T0 +(x− x0)Tx +(y− y0)Ty +(z− z0)Tz.
Here (x0,y0,z0) is the 3D coordinates of the vertex, T0 is a
degenerate tensor, while Tx, Ty, and Tz are tensors that may be
degenerate or non-degenerate. Together, the coefficients of Tx, Ty,
and Tz form the Jacobian of the tensor field and are responsible for
the local tensor degenerate patterns (wedges, trisectors) around the
point where the constraint is placed.

We have found that it is easier and often more intuitive to specify
not a single constraint, but a set of constraints along a curve. This is
especially true when specifying degenerate tensor constraints, which
naturally form curves. Given a user-specified curve, our system
first generates a spline that best captures the sketched curve. The
spline curve is then subsampled at a set of evenly spaced points on
the curve including both end points. At each sample point p, we
compute a frame based on the method of Bergou et al. [2008]. The
first vector in the frame, i.e., the curve tangent, is assumed to be a
non-degenerate eigenvector (please see the supplementary material
for the definition).

For a non-degenerate tensor constraint, the other two vectors in
the frame are assumed to be the remaining eigenvectors. The user
can change the eigenvectors by freely rotating the frame in 3D.
The default maximal eigenvalue is 1 if L, and the default minimal

eigenvalue is −1 for P type of constraints. The user also provides
the desired mode (see supplementary material) of the tensors along
the curve through the interface. The desired tensor mode combined
with the given eigenvalue can uniquely determine the other two
eigenvalues.

For a degenerate tensor constraint, the other two vectors in the
frame give the degenerate plane. Again, the user can change the
non-degenerate eigenvector and the degenerate plane by rotating the
frame. The default eigenvalues are 2,−1,−1 for an L constraint and
1,1,−2 for a P constraint. The default values for the Jacobian are

Tx =

1 0 0
0 −1 0
0 0 0

, Ty =

0 1 0
1 0 0
0 0 0

 and Tz = 0 for a wedge

constraint. A default Jacobian for a trisector constraint simply
negates Ty. The user can change the 2D tensor pattern inside the
degenerate plane by changing the 2× 2 sub-blocks in Tx and Ty.
The user can also rotate the non-degenerate eigenvector direction
freely in 3D, which will lead to the rotation of the 3D frame but the
Jacobian coefficients do not change with respect to the new local
coordinate system. This can lead to the change in the angle between
the non-degenerate eigenvector and the tangent of the degenerate
curve.

3 Topological Editing Operations

(a) (b) (c)

(d) (e) (f)

Figure 4: Degenerate curve removal and reconnection can be seen as
performing simultaneous bifurcations on a family of 2D tensor fields:
a wedge and trisector curve pair reconnection (left), a mixed loop
removal (middle), and two wedge curve reconnection (right). Note
that (a) to (e) corresponds to wedge and trisector curve removal.

The tensor fields generated in the first step often contain degenerate
curves in addition to the ones specified by the user. As mentioned
earlier, excessive and misbehaving degenerate curves can lead to
visual artifacts in the applications. Here, we introduce a number of
fundamental topological editing operations that we have identified
as part of this research. These operations are designed to impact
the least number of degenerate curves, while together can provide
enough flexibility to modify tensor field topology.

The first topological editing operation is degenerate curve removal,
which refers to removing one or two degenerate curves. In the
former, a degenerate curve with both wedge and trisector segments
is eliminated (Figure 4b to Figure 4e). Notice the difference in the

tensor field along a number of cutting planes before (Figure 4b) and
after (Figure 4e) the one degenerate curve removal operation. The
two degenerate curve removal operation is illustrated also in Figure 4
((a) to (e)). In this case two degenerate curves (one wedge and one
trisector) are cancelled. The degenerate curve removal operations
are designed to reduce the number of degenerate curves in the field.

The second topological editing operation is degenerate curve
reconnection, which refers to cutting open two degenerate curve
segments and stitching together pieces from different segments
together, thus resulting in two new degenerate curve segments. There
are three fundamental scenarios. First, one wedge curve and one
trisector curve are reconnected (Figure 4a to Figure 4d). The second
scenario is the inverse of first scenario, i.e., two mixed curves (with
both wedge and trisector segments) are reconnected so that two
pure degenerate curves result (one wedge and one trisector). The
last scenario refers to reconnecting two pure degenerate curves
with the same type (Figure 4c to Figure 4f). In this case two
wedge curves are reconnected, resulting in two wedge curves. The
degenerate curve reconnection operation does not change the number
of degenerate curves. Rather, it changes how these curves connect.
This operation can help untangle linked degenerate curves and
thus facilitate subsequential topological editing operations such as
removal. In addition, when mixed degenerate curves are undesirable,
this operation can help reduce the number of such curves.

The last topological editing operation is degenerate curve defor-
mation. In this case, part of a degenerate curve is deformed. This
operation does not reduce the number of the degenerate curves or
change their connectivity. Instead, it can control the shape (and
location) of degenerate curves in the field.

In our system, the three topological editing operations are imple-
mented under a unified framework. This framework consists of
two steps. First, a region enclosing only the targeted degenerate
curves (or segments of them) is constructed. Second, the field inside
the region is modified to strive for the desired effects (removal,
reconnection, or deformation). The first step is achieved by finding
all the tetrahedra containing the desired degenerate curves (or
segments on them) and iteratively adding more tets until the region
is a topological ball (or a topological torus when removing two
degenerate loops). Tets containing other degenerate curves are not
added, thus ensuring that the topological editing operations only
modify targeted degenerate curves.

The second step, i.e., field modification inside the region, depends
on the type of the operation. For degenerate curve deformation, we
construct a re-parameterization of the region (self-homeomorphism)
such that the homeomorphism is the identity map on the region’s
boundary and maps the original curve segment to its deformed
shape. The self-homeomorphism naturally leads to a modified tensor
field with the desired shape of the targetted degenerate curve. For
degenerate curve reconnection and removal, we perform tensor-
valued Laplacian smoothing inside the volume with the tensor values
fixed at the region’s boundary and some interior vertices.

Figure 5 shows a sequence of topological editing operations
performed on a tensor field on the bunny.

4 Applications

We demonstrate applications of our method in anisotropic Gabor
noise (Figure 6d), solid texturing (Figures 6a to 6c), and geometry
element placement (Figures 1, 2 and 6e). The fields used in all these
examples are created with our tensor field design system.

References

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B.,

(a) (b) (c) (d) (e)

Figure 5: A sequence of topological editing operations are applied to an input tensor field on the bunny. From left to right are: (a) the input
tensor field, (b) two degenerate curves are reconnected, resulting in one pure wedge curve (yellow) and one pure trisector curve (red), (c) the two
degenerate curves are removed simultaneously, (d) a mixed degenerate loop is removed (the green/blue loop), and (e) a section of the degenerate
curve along the bunny’s back (green) is deformed. Notice that our editing operations is able to perform degenerate curve reconnection even when
they are relatively far away and there are additional degenerate curves in the middle.

(a) horse (b) bunny (c) feline (d) rocker arm (e) stream tubes

Figure 6: Solid texture synthesis based on examples ((a), (b), (c)) and procedures ((d), (e)). The outputs are rendered through different cross
sections to illustrate their volumetric nature.

AND GRINSPUN, E. 2008. Discrete Elastic Rods. In SIGGRAPH
’08, 1–12.

ENNIS, D. B., AND KINDLMANN, G. 2006. Orthogonal tensor
invariants and the analysis of diffusion tensor magnetic resonance
images. Magnetic Resonance in Medicine 55, 1, 136–146.

IJIRI, T., MECH, R., IGARASHI, T., AND MILLER, G. 2008. An
example-based procedural system for element arrangement. EG

’08 27, 2, 429–436.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHINSKI,
D., AND WONG, T.-T. 2007. Solid texture synthesis from 2d
exemplars. In SIGGRAPH ’07.

LAGAE, A., AND DRETTAKIS, G. 2011. Filtering solid gabor noise.
In SIGGRAPH ’11, 51:1–6.

LAGAE, A., LEFEBVRE, S., DRETTAKIS, G., AND DUTRÉ, P.
2009. Procedural noise using sparse gabor convolution. In
SIGGRAPH ’09, 54:1–10.

MA, C., WEI, L.-Y., AND TONG, X. 2011. Discrete element
textures. In SIGGRAPH ’11, 62:1–10.

TAKAYAMA, K., OKABE, M., IJIRI, T., AND IGARASHI, T. 2008.
Lapped solid textures: filling a model with anisotropic textures.
In SIGGRAPH ’08, 1–9.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G.
2009. State of the art in example-based texture synthesis. In
EuroGraphics STAR, 93–117.

ZHANG, E., HAYS, J., AND TURK, G. 2007. Interactive tensor
field design and visualization on surfaces. IEEE Transactions on
Visualization and Computer Graphics 13, 1, 94–107.

ZHANG, G.-X., DU, S.-P., LAI, Y.-K., NI, T., AND HU, S.-M.
2011. Sketch guided solid texturing. Graphical Models 73, 3,
59–73.

ZHENG, X., AND PANG, A. 2004. Topological lines in 3D tensor
fields. In Proceedings IEEE Visualization ’04, 313–320.

ZHENG, X., PARLETT, B., AND PANG, A. 2005. Topological
structures of 3D tensor fields. In Proceedings IEEE Visualization
2005, 551–558.

